Sulfur Dioxide Protects Against Collagen Accumulation in Pulmonary Artery in Association With Downregulation of the Transforming Growth Factor β1/Smad Pathway in Pulmonary Hypertensive Rats

نویسندگان

  • Wen Yu
  • Die Liu
  • Chen Liang
  • Todd Ochs
  • Stella Chen
  • Selena Chen
  • Shuxu Du
  • Chaoshu Tang
  • Yaqian Huang
  • Junbao Du
  • Hongfang Jin
چکیده

BACKGROUND We aimed to explore the role of endogenous sulfur dioxide (SO2) in pulmonary vascular collagen remodeling induced by monocrotaline and its mechanisms. METHODS AND RESULTS A rat model of monocrotaline-induced pulmonary vascular collagen remodeling was developed and administered with l-aspartate-β-hydroxamate or SO2 donor. The morphology of small pulmonary arteries and collagen metabolism were examined. Cultured pulmonary arterial fibroblasts stimulated by transforming growth factor β1 (TGF-β1) were used to explore the mechanism. The results showed that in monocrotaline-treated rats, mean pulmonary artery pressure increased markedly, small pulmonary arterial remodeling developed, and collagen deposition in lung tissue and pulmonary arteries increased significantly in association with elevated SO2 content, aspartate aminotransferase (AAT) activity, and expression of AAT1 compared with control rats. Interestingly, l-aspartate-β-hydroxamate, an inhibitor of SO2 generation, further aggravated pulmonary vascular collagen remodeling in monocrotaline-treated rats, and inhibition of SO2 in pulmonary artery smooth muscle cells activated collagen accumulation in pulmonary arterial fibroblasts. SO2 donor, however, alleviated pulmonary vascular collagen remodeling with inhibited collagen synthesis, augmented collagen degradation, and decreased TGF-β1 expression of pulmonary arteries. Mechanistically, overexpression of AAT1, a key enzyme of SO2 production, prevented the activation of the TGF-β/type I TGF-β receptor/Smad2/3 signaling pathway and abnormal collagen synthesis in pulmonary arterial fibroblasts. In contrast, knockdown of AAT1 exacerbated Smad2/3 phosphorylation and deposition of collagen types I and III in TGF-β1-treated pulmonary arterial fibroblasts. CONCLUSIONS Endogenous SO2 plays a protective role in pulmonary artery collagen accumulation induced by monocrotaline via inhibition of the TGF-β/type I TGF-β receptor/Smad2/3 pathway.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mechanical stretching stimulates collagen synthesis via down-regulating SO2/AAT1 pathway

The aim of the study was to investigate the role of endogenous sulfur dioxide (SO2)/ aspartate aminotransferase 1 (AAT1) pathway in stretch-induced excessive collagen expression and its mechanism. The mechanical stretch downregulated SO2/AAT1 pathway and increased collagen I and III protein expression. Importantly, AAT1 overexpression blocked the increase in collagen I and III expression, trans...

متن کامل

Beneficial effects of N-acetylcysteine on protease-antiprotease balance in attenuating bleomycin-induced pulmonary fibrosis in rats

Objective(s): The role of N-acetylcysteine (NAC) as an anti-oxidant in attenuating bleomycin-induced pulmonary fibrosis has been reported. However, its effect on parenchymal remodeling via regulating the protease-antiprotease balance is not fully defined. Therefore, the present study was designed to explore the possible role of matrix metalloproteinases (MMP), tissue i...

متن کامل

Endogenous sulfur dioxide alleviates collagen remodeling via inhibiting TGF-β/Smad pathway in vascular smooth muscle cells

The study was designed to investigate the role of endogenous sulfur dioxide (SO2) in collagen remodeling and its mechanisms in vascular smooth muscle cells (VSMCs). Overexpression of endogenous SO2 synthase aspartate aminotransferase (AAT) 1 or 2 increased SO2 levels and inhibited collagen I and III expressions induced by transforming growth factor (TGF)-β1 in VSMCs. In contrast, AAT1 or AAT2 k...

متن کامل

Anti-inflammatory effect of Yu-Ping-Feng-San via TGF-β1 signaling suppression in rat model of COPD

Objective(s): Yu-Ping-Feng-San (YPFS) is a classical traditional Chinese medicine that is widely used for treatment of the diseases in respiratory systems, including chronic obstructive pulmonary disease (COPD) recognized as chronic inflammatory disease. However, the molecular mechanism remains unclear. Here we detected the factors involved in transforming growth factor beta 1 (TGF-β1)/Smad2 si...

متن کامل

Knockdown of elF3a inhibits collagen synthesis in renal fibroblasts via Inhibition of transforming growth factor-β1/Smad signaling pathway.

Renal fibrosis is characterized by an exacerbated accumulation of deposition of the extracellular matrix (ECM). The eukaryotic translation initiation factor (eIF) 3a is the largest subunit of the eIF3 complex and has been involved in pulmonary fibrosis. However, the role of eIF3a in rental fibrosis is still unclear. Therefore, in this study, we investigated the role of eIF3a in rental fibrosis ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2016